Yale University Entrance Examinations in Mathematics: 1884 to 1898

Boardman School Press, 1898 - 208 páginas

Contenido

 Sección 1 3 Sección 2 6 Sección 3 10 Sección 4 13 Sección 5 16 Sección 6 18 Sección 7 21 Sección 8 26
 Sección 14 103 Sección 15 121 Sección 16 132 Sección 17 135 Sección 18 144 Sección 19 149 Sección 20 150 Sección 21 158

 Sección 9 30 Sección 10 31 Sección 11 47 Sección 12 56 Sección 13 91
 Sección 22 159 Sección 23 161 Sección 24 164 Sección 25 168

Pasajes populares

Página 173 - Two triangles having an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles.
Página 4 - The sum of any two face angles of a trihedral angle is greater than the third face angle.
Página 190 - In any triangle, the square of the side opposite an acute angle is equal to the sum of the squares of the other two sides, minus twice the product of one of these sides and the projection of the other side upon it.
Página 125 - The bisector of an angle of a triangle divides the opposite side into segments which are proportional to the adjacent sides.
Página 115 - IF a side of any triangle be produced, the exterior angle is equal to the two interior and opposite angles ; and the three interior angles of every triangle are equal to two right angles.
Página 171 - The area of a circle is equal to one-half the product of its circumference and radius.
Página 35 - If two sides of a triangle are unequal, the angles opposite are unequal, and the greater angle is opposite the greater side.
Página 37 - In two polar triangles each angle of the one is the supplement of the opposite side in the other. Let ABC, A'B'C
Página 125 - After remarking that the mathematician positively knows that the sum of the three angles of a triangle is equal to two right angles...
Página 186 - It follows that the ratio of the circumference of a circle to its diameter is the same for all circles.