Note.The chain made use of in measuring land, cont monly called Gunter's chain, is 4 poles, or 22 yards in length, and consists of 100 equal links, each link being ** of a yard=.66 of a foot, or 7.92 inches long. An acre of land is also equal to 10 square chains; that is, 10 chains in length, and 1 in breadth ; or it is 4840 square yards, or 160 square poles, or 100,000 square links. Note also that in Land Measure, 40 square poles make 1 rood. And in Cubic Measure, 1728 inches make 1 foot. 27 feet.. 1 yard. 1663 yards 1 pole. 4 roods. 1 acre. Other Measures. 282 cubic inches make 1 ga.lon ale measure. 231. 1 gallon wine measure 268 1 gallon dry measure. 128 cubic feet, or 8 feet in length and / 1 cord of wood. 4 in breadth and 4 in height 343 cubic feet, or 161 feet in length, 1 perch of stone. 11 in breadth, and 1 in height To find the area of a parallelogram, To find the area of a triangle, To find the sides of a right-angled triangle, To find the area of a trapezium, To find the area of a trapezoid, . To find the area of a regular polygon, To find the diameter and circumference of a circle, . 64 To find the length of any arc of a circle, To find the area of a sector of a circle, To find the area of a segment of a circle, To find the area of a circular zone, To find the area of a circular ring, To find the area of an irregular polygon, To find the solidity of a cube, To find the solidity of a parallelopipedon, To find the solidity of a prism, Of a cylinder and its parts, ... Of the cone and pyramid and their parts, To find the solidity of a wedge, To find the solidity of a prismoid, Of a parabolic conoid and its parts, Of an hyperboloid und its parts, Miscellaneous questions in solids, Of the use of the Gauging Rule, Of the Gauging or Diagonal Rod, Of Casks, as divided into varieties, To find the content of a cask of the first form,... ib. To find the content of a cask of the third form,.. 245 OF THE ULLAGING OF CASKS. A TREATISE ON THE ART OF MEASURING. INTRODUCTION DECIMALS. If the numerator and denominator of a fraction be multiplied or divided by any number, its value will not be altered; thus, d=1,1=1 tto=100, and so on. Hence, it is evident, that we can reduce a fraction to another equivalent one, having a given denominator. It likewise follows, that a fraction may be reduced to another equivalent one, whose denominator shall be 10, or some number produced by the continued multiplication of 10, by annexing ciphers to the numerator and denominator, and dividing both (with the ciphers annexed,) by the original denominator. Thus, the fraction =ó, and dividing both the numerator and denominator of the fraction to by 5, the original denominator, we should have to=1t: Again, the fraction =100; and dividing both the numerator and denominator by 4, we shall have 1.0= Also, x=2006; and dividing both the numerator and denominator of the fraction 300 by 8, the original denominator, we shall have 3000, , and so on. Fractions whose denominators are 10, 100, 1000, &e A 25 1000; hence {=375 |