Book IV. And in the same manner as was done in the pentagon, if, through the points of divifion made by inscribing the quindecagon, straight lines be drawn touching the circle, an equilateral and equiangular quindecagon shall be described about it: And likewise, as in the pentagon, a circle may be inscribed in a given equilateral and equiangular quindecagon, and circumscribed about it. THE : A DEFINITIONS. I. Less magnitude is said to be a part of a greater magnitude, when the less measures the greater, that is, 'when 'the less is contained a certain number of times exactly in the 'greater.' II. A greater magnitude is faid to be a multiple of a less, when the III. 'Ratio is a mutual relation of two magnitudes of the fame See N IV. Magnitudes are said to have a ratio to one another, when the less can be multiplied so as to exceed the other. V. The first of four magnitudes is said to have the fame ratio to H4 or, Book V. or, if the multiple of the first be greater than that of the second, the multiple of the third is also greater than that of the fourth. VI. Magnitudes which have the fame ratio are called proportionals. N. B. When four magnitudes are proportionals, it is ufually expressed by saying, the first is to the second, as the 'third to the fourth." VII. When of the equimultiples of four magnitudes (taken as in the fifth definition) the multiple of the first is greater than that of the second, but the multiple of the third is not greater than the multiple of the fourth; then the first is faid to have to the fecond a greater ratio than the third magnitude has to the fourth; and, on the contrary, the third is faid to have to the fourth a less ratio than the first has to the second. VIII. " Analogy, or proportion, is the similitude of ratios." IX. Proportion confists in three terms at least. X. When three magnitudes are proportionals, the first is faid to have to the third the duplicate ratio of that which it has to the second, XI. See N. When four magnitudes are continual proportionals, the first is faid to have to the fourth the triplicate ratio of that which it has to the second, and so on, quadruplicate, &c. increasing the denomination still by unity, in any number of proportionals. Definition A, to wit, of compound ratio. When there are any number of magnitudes of the fame kind, the first is faid to have to the last of them the ratio compounded of the ratio which the first has to the second, and of the ratio which the second has to the third, and of the ratio which the third has to the fourth, and so on unto the last magnitude. For example, If A, B, C, D be four magnitudes of the fame kind, the first A is faid to have to the last D the ratio compounded of the ratio of A to B, and of the ratio of B to C, and of the ratio of C to D; or, the ratio of A to D is said to be compounded of the ratios of A to B, B to C, and C to D: And : And if A has to B, the fame ratio which E has to F; and B Book V. In like manner, the same things being supposed, if M has to XII, In proportionals, the antecedent terms are called homologous to one another, as also the consequents to one another. Geometers make use of the following technical words to fig⚫ nify certain ways of changing either the order or magni'tude of proportionals, so as that they continue still to be 'proportionals,' XIII. Permutando, or alternando, by permutation, or alternately; See N, this word is ufed when there are four proportionals, and it is inferred, that the first has the fame ratio to the third, which the fecond has to the fourth; or that the first is to the third, as the second to the fourth: As is thewn in the 16th prop. of this 5th book. XIV. Invertendo, by inversion: When there are four proportionals, and it is inferred, that the second is to the first, as the fourth to the third. Prop. B. book 5. Componendo, by composition; when there are four proportionals, and it is inferred, that the first, together with the fecond, is to the second, as the third, together with the fourth, is to the fourth. 18th prop. book 5. XVI. Dividendo, by division; when there are four proportionals, and it is inferred, that the excess of the first above the fecond, is to the second, as the excess of the third above the fourth, is to the fourth. 17th prop. book 5. XVII. Convertendo, by converfion; when there are four proportion als, Bool Book V. als, and it is inferred, that the first is to its excess above the ~ second, as the third to its excess above the fourth. Prop. E. book 5. XVIII. Ex aequali (fc. diftantia), or ex aequo, from equality of distance; when there is any number of magnitudes more than two, and as many others, so that they are proportionals when taken two and two of each rank, and it is inferred, that the first is to the last of the first rank of magnitudes, as the first is to the last of the others: Of this there are the two • following kinds, which arise from the different order in ' which the magnitudes are taken two and two. ΧΙΧ. Ex aequali, from equality; this term is used simply by itself, when the first magnitude is to the fecond of the first rank, as the first to the second of the other rank; and as the second is to the third of the first rank, so is the second to the third of the other; and so on in order, and the inference is as mentioned in the preceeding definition; whence this is called ordinate proportion. It is demonstrated in 22d prop. book 5. XX. Ex aequali, in proportione perturbata, feu inordinata; from equality, in perturbate or disorderly proportion †; this term is used when the first magnitude is to the second of the first rank, as the last but one is to the last of the second rank; and as the second is to the third of the first rank, so is the last but two to the last but one of the second rank; and as the third is to the fourth of the first rank, so is the third from the last to the last but two of the second rank; and so on in a crofs order: And the inference is as in the 18th definition. It is 2 |