(ii.) cos A, or (iii.) tan A, then there is only one value of A, which value can be found from the Tables. A B с 104. + + = 90°. 2 2 2 Trigonometrical Ratios are all positive. and the value of any one of its ratios is given. course apply to the angles B and C. and Now EXAMPLE 1. To prove sin (A + B) = sin C. EXAMPLE 2. To prove sin 4. tan A A+B+C = 180°; .. A + B = 180° – C, ... sin (A + B) = sin (180° C) = sin C. 1. cos A = . 16. A+ B+ C ..sin 4+ B 2 = - 1. Therefore 4 A+ B с = COS 90°; sin 90° Find A from each of the six following equations, A being an angle of a triangle: 15. tan A cot B cos C sec A csc B. = • EXAMPLES. XXVI. 2. cos A = 5. √2 sin A = 1. C A+ B A tan is less than 90°, and its 2 Similar remarks of Prove the following statements, A, B, C being the angles of a triangle: 8. cos (A + B + C ) = − 1. 7. sin (A + B + C ) = 0. 9. sin (A + B + C ) = 1. 11. tan (A + B) == tan C. 10. cos (A + B + C' ) = 0. 13. cos (A+B) = cos C. = 90° = COS 17. sin 3 B sin 3 C √3.20 105. II. To prove a = b cos C+ c cos B. From A, any one of the angular points, draw AD perpendicular to BC, or to BC produced if necessary. There will be three cases. Fig. i. when both B and C are acute angles; Fig. ii. when one of them (B) is obtuse; Fig. iii. when one of them (B) is a right angle. Then, A A b A 4 4 b a D C B B III. Fig. i. and Fig. ii. Fig. iii. BD AB ... a = CD – BD = b cos C - c cos (180° — B) = bcos C+ e cos B. = cos ABD; or, BD: = c cos (180° – B), a CB b cos C = = b cos C + c cos B. [For, cos B = cos 90° = 0.] Similarly it may be proved that, b = ccos A+ a cos C; c = a cos B+ b cos A. 106. III. To prove that, in any triangle, the sides are proportional to the sines of the angles opposite; or, To prove that From A, any one of the angular points, draw AD perpendicular to BC, or to BC produced if necessary. Then, I. Fig. 50. AD = b sin C; for, = sin C [Def.]; AD or, and or, = = ... AD = b sin C, AD = c sin ABD = c sin (180° – B). .. AD c sin B; = .. b sin Cc sin B; C sin C Similarly it may be proved that a sin A с b = = sin B. = C sin C = b sin B a b sin A sin B ― 107. IV. To prove that a2 = b2 + c2 - 2 bc cos A. Take one of the angles A. Then of the other two, one must be acute. Let B be an acute angle. From C draw CF perpendicular to BA, or to BA produced if necessary. a A A A b В A B C F III. II. There will be three figures according as A is less, greater than, or equal to a right angle. Then, or, or, or, I. Fig. 51. and that cos A = 108. V. Hence, = II. Fig. 51. BC2 = CA2 + AB2 + 2 · BA · AF; a2 = b2 + c2 + 2 cb cos FAC b2 + c2 EXERCISE I. · b2 + c2 III. Fig. 51. BC2 = CA2 + AB2; and and Similarly it may be proved that b2 + c2 — a2 - 2 bc cos B 2 cb cos A. a2 = b2 + c2 2 be cos A. (For cos A=cos 90°=0.) b2 = c2 + a2 − 2 ca cos B, c2 = a2 + b2 - 2 ab cos C. = .. cos A 2 be cos A. (For FAC = 180° – A.) (Geom.) c2 + a2 62 (For FA= bcos A.) (Geom.) *109. The formulæ of Art. 108 may be obtained directly from those of Art. 105. a = b cos C + c cos B. (1) b = ccos A+ a cos C. (2) c = a cos B+ b cos A. (3) Multiplying (1), (2), (3) by a, b, c respectively and adding, we (Geom.) Cos C obtain a2 + b2 + c2 = 2 a (b cos C+ccos B) + 2 be cos A = 2 a2 + 2 be cos A. a2 = cos C. EXERCISE II. If a = 5, b = 6, c = 7, find cos A. a2 + b2 — c2 2 ab Find the two corresponding expressions, viz., for cos B and 110. VI. Let s stand for half the sum of a, b, c; so that (a + b + c)=2 s. Then, (b+ca) = (b + c + a2a)=(2s-2 a)=2(s− a), (c+ab)=(c+a+b-2b)=(2s-2b)=2(s—b), (a + b − e)=(a+b+c−2 c)=(2 s− 2 c)=2(s — c). 111. VII. To prove that (s — b) (s bc sin 112. = V cos A 2 sin2 4 2 sin?4 2 2 where s stands for half the sum of the sides a, b, c. Now, since ..sin: .. sin tan = = = 2 22 = V Again, since 2 cos24 1 b2 + c2 a2 哈 = 2 bc − (b2 + c2 — a2 sin (2 s A 2 A COS cos A 1 = (a + c − b) (a + b −c); 4 bc 113. VIII. Again, sin A sin c) ... sin A a2 − (b − c)2 _ { a − (b − c)} {a + (b − c)} = - 2 b) (28 - =1+ cos A, = 1+ cos A=1+ 28. and that cos and 1 .. sin A2. 2 sin b2 + c2 — a2 b2 + c2- a2 2 bc = 2 Vs (s bc - 2 c) 2 a) cos A = 2 A A 14. cos 4; 2 bc = a b) (s — c) s (s EXAMPLE. Write down the corresponding formulæ for B B for cos 2 and for tan R22. 2 = (s—b) (s—c) V a2 (b2 - 2 bc + c2) 2 bc S (S 2 sin24 (Art. 88.) s ( s − a). a) (s — b) (s — b) (s — c). bc S bc b) C s (s - a) bc a) |