A Treatise on Plane and Spherical Trigonometry: And Its Applications to Astronomy and Geodesy |
Comentarios de la gente - Escribir un comentario
No encontramos ningún comentario en los lugares habituales.
Contenido
177 | |
179 | |
180 | |
181 | |
182 | |
183 | |
184 | |
185 | |
12 | |
13 | |
16 | |
18 | |
20 | |
23 | |
25 | |
26 | |
27 | |
28 | |
29 | |
30 | |
31 | |
33 | |
34 | |
35 | |
36 | |
37 | |
38 | |
39 | |
40 | |
41 | |
43 | |
44 | |
50 | |
52 | |
55 | |
56 | |
57 | |
58 | |
60 | |
61 | |
63 | |
65 | |
66 | |
67 | |
69 | |
70 | |
72 | |
75 | |
77 | |
87 | |
91 | |
93 | |
95 | |
98 | |
99 | |
100 | |
102 | |
103 | |
105 | |
106 | |
108 | |
110 | |
112 | |
114 | |
115 | |
116 | |
117 | |
126 | |
128 | |
131 | |
132 | |
133 | |
134 | |
135 | |
137 | |
138 | |
140 | |
146 | |
147 | |
148 | |
149 | |
150 | |
152 | |
153 | |
154 | |
155 | |
157 | |
159 | |
165 | |
166 | |
167 | |
168 | |
169 | |
172 | |
173 | |
176 | |
186 | |
187 | |
188 | |
189 | |
190 | |
191 | |
192 | |
193 | |
194 | |
195 | |
196 | |
197 | |
198 | |
199 | |
204 | |
205 | |
207 | |
208 | |
209 | |
211 | |
213 | |
214 | |
215 | |
216 | |
217 | |
218 | |
219 | |
220 | |
221 | |
222 | |
223 | |
224 | |
226 | |
229 | |
233 | |
234 | |
235 | |
236 | |
237 | |
238 | |
239 | |
240 | |
241 | |
242 | |
243 | |
244 | |
245 | |
247 | |
248 | |
250 | |
251 | |
252 | |
254 | |
267 | |
274 | |
297 | |
298 | |
299 | |
300 | |
301 | |
302 | |
303 | |
304 | |
309 | |
312 | |
313 | |
314 | |
316 | |
324 | |
325 | |
326 | |
328 | |
329 | |
330 | |
331 | |
332 | |
338 | |
339 | |
341 | |
342 | |
346 | |
348 | |
350 | |
352 | |
353 | |
359 | |
Otras ediciones - Ver todas
A Treatise on Plane and Spherical Trigonometry: And Its Applications to ... Edward Albert Bowser Sin vista previa disponible - 2013 |
A Treatise on Plane and Spherical Trigonometry, and Its Applications to ... Edward Albert Bowser Sin vista previa disponible - 2019 |
Términos y frases comunes
approximately base becomes calculated called centre circle circular measure common cos x cosc cosec cosine decimal places denote determined diff difference distance dividing draw Eliminate equal equations escribed EXAMPLES expression factors feet figure Find log find the angle find the height formed formulć functions Given log gives greater Hence horizon increase integer known length less limit log sin logarithms means method miles Multiply natural nearly negative NOTE object observed obtained opposite perpendicular plane positive proportional prove quadrant radius respectively result right angles right triangle root rule sides Similarly sin B sin sine sinş siny solution Solve sphere spherical triangle student subtract tables tangent tower triangle ABC trigonometric functions vertical yards
Pasajes populares
Página 148 - In any triangle the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides and the cosine of their included angle.
Página 147 - Law of Sines. — In any triangle the sides are proportional to the sines of the opposite angles.
Página 278 - AB'C, we have by (4) cos a' — cos b cos c' + sin b sin c' cos B'AC, or cos(тг— a) = cos b cos(тг— c) + sin b sin(тт — C)COS(тг —A). .-. cos a = cos b cos с + sin b sin с cos A.
Página 278 - ... cos a = cos b cos с + sin b sin с cos A ; (2) cos b = cos a cos с + sin a sin с cos в ; ^ A. (3) cos с = cos a cos b + sin a sin b cos C.
Página 278 - A cos 6 = cos a cos c + sin a sin c cos B cos c = cos a cos 6 + sin a sin 6 cos C Law of Cosines for Angles cos A = — cos B...
Página 6 - Radian is the angle subtended, at the centre of a circle, by an arc equal in length to the radius...
Página 17 - If the cosine of A be subtracted from unity, the remainder is called the versed sine of A. If the sine of A be...
Página 89 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.
Página 149 - In every plane triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference.