EXAMPLES. 1. In the triangle ABC prove (1) a+b:c=cos } (A – B): sin C, and (2) a – b:c=sin ] (A – B): cos } C. 2. If AD bisects the angle A of the triangle ABC, prove BD:DC = sin C:sin B. 3. If AD' bisects the external vertical angle A, prove BD': CD' sin C:sin B. COS A - 2 sin) А .: 2 2 sin^ = 99. To express the Sine, the Cosine, and the Tangent of Half an Angle of a Triangle in Terms of the Sides. I. By Art. 96 we have 62 +c? — a? =1 (Art. 49) 2 bc 2 2 bc 2 bc 2 bc Let a+b+c=2 s; then a+b-c=2(8-c), and a-b+c=2(8-0). ,- 2. 2 2 sin? 4 = 2 (8 —c)2(8 – 1). (3) II. (Art. 49) .: 2 cos2A 1+ sin |(s – a)(s — b) ab A cos A = 2 cos? os? A 1. 2 12 + c -a 2bc 2 bc 2 bc 2 bc = S C (9) S (8-0) Since any angle of a triangle is < 180°, the half angle is < 90°; therefore the positive sign must be given to the radicals which occur in this article. COS 100. To express the Sine of an Angle in Terms of the Sides. A A (Art. 49) -c) 8 (8 - a). bc (Art. 99) 2 ... sin A: V8 (8 - a)(8 - ) (8 — c). bc S S 2 ab 1 Cor. sin A = V26%c" + 2 c?a? + 2 aob? – a'- 14-04, 2 bc and similar expressions for sin B, sin C. EXAMPLES. In any triangle ABC prove the following statements : 1. a (b cos C-c cos B)=b - c. 2. (b + c) cos A+(c + a) cosB +(a + b) cosC=a+b+c. sin A +2 sin B sin C 3. a +26 sinac ca с 7. a sin (B-C) + b sin (C – A) +csin (A – B)=0. 9. tan 4 A:tan B=($-)(--C). (3) Given the three sides. 2 sin A Vs(s – a) (s — b)(8 —c) (Art. 100) bc Substituting in S= { bc sin A, we get S=Vs(s – a)(s – b)(s – c). S 102. Inscribed Circle. — To find the radius of the inscribed circle of a triangle. C Let ABC be a triangle, O the F centre of the inscribed circle, and E go its radius. Draw radii to the points of contact D, E, F; and join OA, OB, OC. Then A C D ha с 103. Circumscribed Circle. To find the radius of the circumscribed circle of a triangle in terms of the sides of the triangle. Let O be the centre of the circle A B described about the triangle ABC, and R its radius. Through O draw the diameter CD and join BD. Then Z BDC =Ż BAC=LA. .. R abc (2) |