A System of Geometry and Trigonometry: Together with a Treatise on Surveying; Teaching Various Ways of Taking the Survey of a Field; Also to Protract the Same and Find the Area. Likewise, Rectangular Surveying; Or, an Accurate Method of Calculating the Area of Any Field Arithmetically, Without the Necessity of Plotting It. To the Whole are Added Several Mathematical Tables ... with a Particular Explanation ... and the Manner of Using Them ... |
Dentro del libro
Resultados 1-5 de 5
Página 129
N. CoSine Sine . Sine Sine Sine Sine Sine Sine 000000 Unit o 1745 99985
0349099939 05234 | 99863 60 1 29 00 774 84 519 38 263 61159 2 58 00 803
84 548 37 292 60 58 3 87 832 83 577 36 321 58/57 4 116 862 83 606 35 350
5756 5 ...
N. CoSine Sine . Sine Sine Sine Sine Sine Sine 000000 Unit o 1745 99985
0349099939 05234 | 99863 60 1 29 00 774 84 519 38 263 61159 2 58 00 803
84 548 37 292 60 58 3 87 832 83 577 36 321 58/57 4 116 862 83 606 35 350
5756 5 ...
Página 136
N. CoSine Sine Sine Sine Sine Sine Sine Sine 728 084 432 939 768 795 822
848 29 68328 671/27 660/26 648/25 636/24 310 16 3463993809 36271 93190
37892 92543 3950191868 44 17 666 799 298 180 919 532 528 856 43 18 694 ...
N. CoSine Sine Sine Sine Sine Sine Sine Sine 728 084 432 939 768 795 822
848 29 68328 671/27 660/26 648/25 636/24 310 16 3463993809 36271 93190
37892 92543 3950191868 44 17 666 799 298 180 919 532 528 856 43 18 694 ...
Página 137
N. CoSine Sine Sine Sine Sine Sine Sine Sine 0 40674 91355.42262 90631
4383789879 4539989101160 1 700 343 288 618 8631 867 425 2 727 331 315
606 889 854 451 07458 3 753 319 341 594 916 841 477 061157 780 307 367
5821 ...
N. CoSine Sine Sine Sine Sine Sine Sine Sine 0 40674 91355.42262 90631
4383789879 4539989101160 1 700 343 288 618 8631 867 425 2 727 331 315
606 889 854 451 07458 3 753 319 341 594 916 841 477 061157 780 307 367
5821 ...
Página 141
N. CoSine Sine Sine Sine Sine Sine 160 058779 8090260181 79864161566/
7880159 1 802 885 205 846 589 2 826 867 228 829 612 3 849 850 251 811 635
4 873 833 274 793 658 72955 5 896 816 298 776 681 711 541 6 9201 799 321
...
N. CoSine Sine Sine Sine Sine Sine 160 058779 8090260181 79864161566/
7880159 1 802 885 205 846 589 2 826 867 228 829 612 3 849 850 251 811 635
4 873 833 274 793 658 72955 5 896 816 298 776 681 711 541 6 9201 799 321
...
Página 144
N. CoSine Sine Sine Sine Sine Sine 757 2 344 538 559 32 1667 258 74002
68539172817169800 | 71610 44 17 280173983 561 797 821 ) 590 43 18 301
963 582 777 842 569 42 19 323 944 603 862 54941 20 924 624 737 883 529 40
21 ...
N. CoSine Sine Sine Sine Sine Sine 757 2 344 538 559 32 1667 258 74002
68539172817169800 | 71610 44 17 280173983 561 797 821 ) 590 43 18 301
963 582 777 842 569 42 19 323 944 603 862 54941 20 924 624 737 883 529 40
21 ...
Comentarios de la gente - Escribir un comentario
No encontramos ningún comentario en los lugares habituales.
Otras ediciones - Ver todas
SYSTEM OF GEOMETRY & TRIGONOME Abel 1765-1825 Flint,George Gillet,Frederick a. P. (Frederick Augu Barnard Sin vista previa disponible - 2016 |
SYSTEM OF GEOMETRY & TRIGONOME Abel 1765-1825 Flint,George Gillet,Frederick a. P. (Frederick Augu Barnard Sin vista previa disponible - 2016 |
Términos y frases comunes
according accurately added Angle Angled Triangle Arch Base Bearing calculated called Circle Co-Sine Sine Compass contained Course Decimals describe Diagonal Difference directions Dist Distance divided double draw drawn Elongation equal EXAMPLE Field FIELD BOOK Figure find the Angle find the Area four fourth give given greater half hand Hypothenuse known Land Left Leg BC length less Line Links Logarithms manner measuring method Minutes multiply Natural Sines Needle North North Areas Note observe opposite parallel particular Perpendicular PLATE Plot Point practice preceding PROBLEM Product Proportion protract Quotient Radius Remainder represent Right Angled Roods Rule Secant Co-Secant seen Side Sine Co-Sine Sine Sine Sine Square Square Root Star Station subtract Surveying Surveyor Table Tang Tangent Co-Secant Secant third Trapezoid Triangle TRIGONOMETRY true whole
Pasajes populares
Página 28 - As the base or sum of the segments Is to the sum of the other two sides, So is the difference of those sides To the difference of the segments of the base.
Página 27 - TO THEIR DIFFERENCE ; So IS THE TANGENT OF HALF THE SUM OF THE OPPOSITE ANGLES', To THE TANGENT OF HALF THEIR DIFFERENCE.
Página 6 - The Circumference of every circle is supposed to be divided into 360 equal parts, called Degrees ; and each degree into 60 Minutes, each minute into 60 Seconds, and so on.
Página 24 - In this case the" hypothenuse may be found by the square root without finding the angles ; according to the following PROPOSITION. IN EVERY RIGHT ANGLED TRIANGLE, THE SUM OF THE SQUARES OF THE TWO LEGS IS EQUAL TO THE SQUARE OF THE HYPOTHENUSE. In the above EXAMPLE, the square of AB 78.7 is 6193.69, the square of BC 89 is 7921 ; these added make 14114,69 the square root of which is nearest 119.
Página 40 - Field work and protraction are truly taken and performed ; if not, an error must have been committed in one of them : In such cases make a second protraction ; if this agrees with the former, it is to be presumed the fault is in the Field work ; a re-survey must then be taken.
Página 33 - To find the area of a trapezoid. RULE. Multiply half the sum of the two parallel sides by the perpendicular distance between them : the product will be the area.
Página 6 - Therefore all radii of the same circle are equal. 13. The diameter of a circle is a right line drawn from one side of the circumference to the other, passing through the centre ; and it divides the circle into two equal parts, called semicircles ; as AB or DE.
Página 40 - Let his attention first be directed to the map, and inform him that the top is north, the bottom south, the right hand east, and the left hand west.
Página 23 - The square of the hypothenuse is equal to the sum of the squares of the other two sides ; as, 5033 402+302.