# Binomial Theorem and Logarithms: For the Use of the Midshipmen at the Naval School, Philadelphia

Perkins & Purves, 1843 - 92 páginas

### Comentarios de la gente -Escribir un comentario

No encontramos ningún comentario en los lugares habituales.

### Contenido

 CHAPTER 9 CHAPTER II 15 Of the Quotient 21
 CHAPTER IV 27 NATUKE AND USE OF LOGARITHMS 49 CHAPTER VII 66

### Pasajes populares

Página 50 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.
Página 49 - The logarithm of the product of two or more numbers is equal to the sum of the logarithms of those numbers.
Página 61 - The fourth term is found by multiplying the second and third terms together and dividing by the first § 14O.
Página 50 - The logarithm of the quotient of two numbers is equal to the logarithm of the dividend minus the logarithm of the divisor.
Página 19 - Cxz+, etc.=A'+B'x+C'z2 + , etc., must be satisfied for each and every value given to x, then the coefficients of the like powers of x in the two members are equal each to each.
Página 74 - The logarithm of a number in any system is equal to the Naperian logarithm of that number multiplied by the modulus of the system.
Página 49 - Corollary. When the base is less than unity, it follows, from art. 3, that the logarithms of all numbers greater than unity are negative, while those of all numbers less than unity are positive. But when, as is almost always...
Página 55 - ... place, the characteristic being positive when this figure is to the left of the units' place, negative when it is to the right of the units' place, and zero when it is in the units
Página 27 - I have no doubt that he made the difcovery himfelf, without any light from Briggs, and that he thought it was new for all powers in general, as it was indeed for roots and quantities with fractional and irrational exponents.
Página 50 - Bee that to divide one number by another, we subtract the log. of the divisor from the log. of the dividend, and the remainder is the log.