# Plane and Spherical Trigonometry

D.C. Heath & Company, 1917 - 313 páginas

### Comentarios de la gente -Escribir un comentario

No encontramos ningún comentario en los lugares habituales.

### Pasajes populares

Página 4 - The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor. , M , ,• , . logi — = log
Página 130 - ... cos a = cos b cos с + sin b sin с cos A ; (2) cos b = cos a cos с + sin a sin с cos в ; ^ A. (3) cos с = cos a cos b + sin a sin b cos C.
Página 4 - The logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers.
Página 111 - From the top of a hill the angles of depression of two successive milestones, on a straight level road leading to the hill, are observed to be 5° and 15°.
Página 3 - If the number is less than 1, make the characteristic of the logarithm negative, and one unit more than the number of zeros between the decimal point and the first significant figure of the given number.
Página 85 - B is negative, and BD — — a cos B. The substitution of this in (4) leads us again to (3). Thus we see that (3) is true in all cases. THE LAW OF COSINES. The square of any side .of a plane triangle is equal to the sum of the squares of the other two sides minus twice their product times the cosine of the included angle. This may be regarded as a generalization of the Pythagorean Theorem to which it reduces when the included angle is a right angle. These two laws are among the most important of...
Página 2 - If the number is greater than 1, the characteristic is one less than the number of places to the left of the decimal point.
Página 131 - By (150) and (152) we have cos a = cos b cos c -\- sin b sin c cos A, cos c = cos a cos b...
Página 31 - The product of all the lines, that can be drawn from one of the angles of a regular polygon of n sides, inscribed in a circle whose radius is a, to all the other angular points = no.
Página 111 - From the top of a cliff 150 ft. high the angles of depression of the top and bottom of a tower are 30° and 60°, respectively.