Elements of Plane and Spherical Trigonometry with Logarithmic and Other Mathematical Tables and Examples of Their Use and Hints on the Art of Computation, Volumen1

Portada
H. Holt, 1882 - 168 páginas

Dentro del libro

Comentarios de la gente - Escribir un comentario

No encontramos ningún comentario en los lugares habituales.

Páginas seleccionadas

Otras ediciones - Ver todas

Términos y frases comunes

Pasajes populares

Página 66 - In any triangle the square of any side is equal to the sum of the squares of the other two sides minus twice the product of these two sides and the cosine of their included angle.
Página 139 - A cos 6 = cos a cos c + sin a sin c cos B cos c = cos a cos 6 + sin a sin 6 cos C Law of Cosines for Angles cos A = — cos B...
Página 70 - TO THEIR DIFFERENCE ; So IS THE TANGENT OF HALF THE SUM OF THE OPPOSITE ANGLES', To THE TANGENT OF HALF THEIR DIFFERENCE.
Página 132 - I. The sine of the middle part is equal to the product of the tangents of the adjacent parts. II. The sine of the middle part is equal to the product of the cosines of the opposite parts.
Página 44 - To express the sine and cosine of the sum of two angles in terms of the sines and cosines of the angles.
Página 73 - If two triangles have two sides of the one respectively equal to two sides of the other, and the contained angles supplemental, the two triangles are equal.
Página 66 - IN any Obtuse-angled Triangle, the Square of the Side subtending the Obtuse Angle, is Greater than the Sum of the Squares of the other two Sides, by Twice the Rectangle of the Base and the Distance of the Perpendicular from the Obtuse Angle. Let ABC be a triangle...
Página 105 - ... the modulus of a product is equal to the product of the moduli of the factors.
Página 43 - At the top of a tower, 108 feet high, the angles of depression of the top and bottom of...
Página 73 - The area of a triangle is equal to half the product of any two of its sides multiplied by the sine of the included angle, radius being unity.

Información bibliográfica