Imágenes de páginas
PDF
EPUB

exponent is even the result of the involution has the + sign, and when the exponent is odd, the result has the

sign.

263. The Positive Integral Power of a Positive Quantity. It has been proved that

1.

(an)m

= amn

[261]

In case n is a positive integer, it also follows from 85, 5, that

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]

(— ɑm)n.

am, where the positive or negative sign is to be

prefixed according as n is even or odd. Or, since

[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]
[blocks in formation]

[2]

= (-1)" """

according as n is even or odd. These five observa

tions give the following rule:

A quantity is raised to any power by multiplying the exponent of every factor in the quantity by the exponent of that power, and prefixing the proper sign, determined by the preceding rule.

264. The Positive Integral Power of a Fraction.-By definition, when is a rational fraction,

b

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors]

265. Powers of Binomials.-It has already been proved in 289

that

1. (a + b)2 = a2+2ab+b2, the second power of (a + b) 2. (a+b)3 = a3 + 3 ab+3ab+b3, third power of (a + b)

3. (a + b) = a1+4a3b+6a2b2+4ab3+b, fourth power of (a+b):

Similarly, the second, third, and fourth powers of (a - b) are:

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small]

That is, wherever the odd power of b occurs, the negative sign is prefixed.

Later the theorem called the Binomial Theorem will be proved which provides a method for finding any positive integral power of the binomials a + b or a - b without multiplication. This theorem has been stated in 89, VIII. It may be expressed for the exponent n in a formula as follows:

[merged small][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small]

These formulae have n + 1 terms in case n is a positive integer, but have an infinite number if n be negative or fractional.

266. These rules for the formation of a power of a binomial hold in case the terms of the binomial have coefficients or exponents. 1. Find the third power of 2x2-3 y3.

Since

(a - b)3

= a3

3a2b+3ab2 - 13,

by putting 2 x for a and 3 y3 for b, it follows that

2.

Since

(2.c2 — 3 y3)3 = (2x2) 3 — 3 (2 x2)2 (3 y3)+3(2x2) (3 y3)2 — (3 y3)3

[merged small][merged small][merged small][ocr errors][subsumed][merged small][ocr errors][merged small]

by putting

[ocr errors]

10 a2b3 +5 ab1 .

[ocr errors]

for a andyz for b, the result is

[ocr errors][subsumed]

267. It is evident that the mth power of a" is the same thing as the nth power of a", namely, am; that is, the same result is arrived at by different processes of involution. For example, the 6th power of ab may be found by repeated multiplication by (a+b); or

*It will be shown later that the law of formation of these formulae holds when n is a a negative integer or a positive or negative fraction when −1<<+1.

the cube of a+b may first be found and then the square of the result, since the square of (a + b)3 is (a + b); or the square of (a+b) may first be found and then the cube of (a + b)2, which is (a+b).

268. Powers of Expressions of more than Two Terms.-It has already been shown (289, VIII) that

(a + b + c)2 = a2 + b2 + c2 + 2 ab + 2 ac + 2 bc, (a+b+c+d)2=a2+b2 + c2+d2+2ab+2ac+2ad+2bc+2bd+2cd; and hence is obtained the following rule, which holds good in the preceding examples and others similar to them: The square of any polynomial consists of the square of each term, together with twice the product of every pair of terms.

These results may be written in another form:

(a + b + c)2 = a2 + 2 a (b + c) + b2 + 2 b c + c2

(a+b+c+d)2 =a2+2 a (b+c+d) +b2+ 2b (c+d) +c2+2cd+d2.

The following rule holds good in these and similar examples: The square of any polynomial consists of the square of each term plus twice the product of each term by the sum of all the terms which follow it. A general proof of these formulae for general cases can be deduced by the process of mathematical induction, which will be Thus, it may be proved that:

explained later.

[merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

269. The following additional examples illustrate the first of the rules in the preceding article.

(a + b — c)2 = a2 + b2 + c2+ 2 ab

[ocr errors]

2 ac- 2 bc.

(12x3x2)2 = 1 + 4x2 + 9 x1 — 4 x + 6 x2- 12 x3

=

4x2+9rt 14x10

[blocks in formation]

(1-2x+3x-4x3)=1+ 4x2+ 9 x1+ 16 x6-4x+6x28x3

-12 x 16 x 24 x5 1-4x+10-20 x3+25 x1-24x5+16xo.

=

[ocr errors]

The following may

270. The results given in 289, X, for the cube of a + b, a and of a+b+c should be carefully noticed. also be verified.

(a+b+c+d)3 = a3 + b3 + c3+d3 +3a2(b+c+d) +3 b2 (a+c+d) +3c2 (a+b+d) + 3d2 (a+b+c)+6bcd+6acd+6abd+6abc. + a)3= a ̧3+ a3+a3+ a

(a+a+a+

3

[merged small][merged small][merged small][ocr errors][subsumed][subsumed][merged small][ocr errors][merged small]

.

[ocr errors]

3

[merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][subsumed][ocr errors][merged small]
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][subsumed][merged small][ocr errors][merged small][merged small][merged small][subsumed][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][subsumed][merged small][ocr errors][merged small][merged small][subsumed][merged small][merged small][merged small][merged small][ocr errors][subsumed][ocr errors][subsumed][merged small][ocr errors][subsumed][merged small][merged small][merged small][merged small][merged small][subsumed][merged small][merged small][merged small][subsumed][ocr errors][merged small][subsumed][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][subsumed][subsumed][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small]

34. Simplify (1+3x+3x2 + x3)-(1-3x+3x2-x3)2.

[blocks in formation]

40.

Find the expansion of the following to six terms: (1-x+x2 — x3 + x1 — x2 + . . )2.

[ocr errors]
[merged small][merged small][ocr errors][ocr errors]

42.

43.

(a + bx + cx2 + dx3 + ex1 + ƒx2 + gæ® + . . )o.

[subsumed][merged small][subsumed][merged small][merged small][merged small][ocr errors][merged small]
[ocr errors]

a

[ocr errors]
[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small]
[ocr errors]

16

47. Find the term independent of x in

48.

49.

50.

42

Show that (ax2 + 2 bxy + cy3) (aX2 + 2bXY+ cY2)
= {axX+cy Y+b(x Y+yX); 2 + (ac — b3) ( x Y— y X′ )2.
Show that (+pxy+qy2) (X® +pXY+qY2)

=(xX+pyX+ qy Y)2 + p(xX+pyX+ qy Y) ·
(y X − x Y) + q(xY--'yX′)2.

Show that (+ y2 + z2 + w2) (p2 + q2 + r2+ 82)

=

zs—wr)2

= (xp — yq + zr -- ws)2 + (xq + yp
+(xrys-p+ wq)2 + (xs + yr + zq+wp).

Find the value of the following to the fifth decimal place:

[merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]
« AnteriorContinuar »