Imágenes de páginas
PDF
EPUB

EXPERIMENTS ON CENTRE OF GRAVITY.

29

from its balance. The vertical line of the centre of gravity passes through the point of support, and the forks oscillate with the cork, which serves as their support, thus forming a movable structure, but much more stable than one is inclined to suppose. This curious experiment is often performed by conjurors, who inform their audience that they will undertake to empty the bottle without disturbing the cork. If a woodcock has been served for dinner, or any other bird with a long beak, take off the head at the extreme end of the neck; then split a cork so that you can insert into it the neck of the bird, which must be tightly clipped to keep it in place; two forks are then fixed into the cork, exactly as in the preceding example, and into the

[graphic][merged small]

bottom of the cork a pin is inserted. This little contrivance is next placed on a piece of money, which has been put on the opening of the neck of the bottle, and when it is fairly balanced, we give it a rotatory movement, by pushing one of the forks as rapidly as we please, but as much as possible without any jerk (fig. 22). We then see the two forks, and the cork surmounted by the woodcock's head, turning on the slender pivot of a pin. Nothing can be more comical than to witness the long beak of the bird turning round and round, successively facing all the company assembled round the table, sometimes with a little oscillation, which gives it an almost lifelike appearance. This rotatory movement will last some time, and wagers are often laid as to which of the company the beak will point at when it

stops. In laboratories, wooden cylinders are often to be seen which will ascend an inclined plane without any impulsion. This appears very surprising at first, but astonishment ceases when we perceive that the centre of gravity is close to the end of the cylinder, because of a piece of lead, which has been fixed in it.

Fig. 23 gives a very exact representation of a plaything which was sold extensively on the Boulevards at Paris at the beginning of the New Year. This little contrivance, which has been known for some time, is one of the most charming applications of the principles relating to the centre of gravity. With a little skill, any one may construct it for himself. It con

[graphic][merged small]

sists of two little puppets, which turn round axles adapted to two parallel tubes containing mercury. When we place the little contrivance in the position of fig. 24, the mercury being at a, the two dolls remain motionless, but if we lower the doll s, so that it stands on the second step (No. 2) of the flight, as indicated in fig. 25, the mercury descends to b at the other end of the tube; the centre of gravity is suddenly displaced; the doll R then accomplishes a rotatory movement, as shown by the arrow in fig. 25, and finally alights on step No. 3. The same movement is also effected by the doll s, and so on, as many times as there are steps. The dolls may be replaced by a hollow cylinder of cartridge paper closed at both ends, and containing a marble; the cylinder, when placed vertically on an inclined

THE AUTOMATON TUMBLERS.

31

plane, descends in the same way as the puppets. The laws of equilibrium and displacement of the centre of gravity, are rigorously observed by jugglers, who achieve many wonderful feats, generally facilitated by the

2

α

Fig. 24.-First position of the puppets.

rotatory motion given to the bodies on which they operate, which brings into play the centrifugal force. The juggler who balances on his forehead a slender rod, on the end of which a plate turns round, would never succeed in the experiment if the plate did not turn on its axis with great rapidity. But by quick rotation the centre of gravity is kept near the point of

[merged small][graphic][merged small]

support. We need hardly remark, too, that it is the motion of a top that tends to keep it in a vertical position.

Many experiments in mechanical physics may occur to one's mind. To conclude the enumeration of those we have collected on the subject, I will describe the method of lifting a glass bottle full of water by means of a simple wisp of straw. The straw is bent before being passed into the bottle of water, so that, when it is lifted, the centre of gravity is displaced,

and brought directly under the point of suspension. Fig. 26 shows the method of operation very plainly. It is well to have at hand several pieces of straw perfectly intact, and free from cracks, in case the experiment does not succeed with the first attempt.

Having now seen how this point we call the centre of gravity acts, we may briefly explain it.

The centre of gravity of a body is that point in which the sum of the forces of gravity, acting upon all the particles, may be said to be united. We know the attraction of the earth causes bodies to have a property we call Weight. This property of weight presses upon every particle of the body,

[graphic][merged small]

and acts upon them as parallel forces. For if a stone be broken all the portions will equal the weight of the stone; and if some of them be suspended, it will be seen that they hang parallel to each other, so we may call these weights parallel forces united in the whole stone, and equal to a single resultant. Now, to find the centre of gravity, we must suspend the body, and it will hang in a certain direction. Draw a line from the point of suspension, and suspend the body again: a line drawn from that point of suspension will pass through the same place as the former line did, and so on. That point

is the centre of gravity of that suspended body. If the form of it be regular, like a ball or cylinder, the centre of gravity is the same as the mathematically central point. In such forms as pyramids it will be found near the largest

[blocks in formation]

mass; viz., at the bases, about one-fourth of the distance between the apex and the centre of gravity of the base.

When the centre of gravity of any body is supported, that body cannot fall. So the well-known leaning towers are perfectly safe, because their lines of direction fall within the bases. The centre of gravity is in the centre of the leaning figure. The line of direction drawn vertically from that point falls within the base; but if the tower were built up higher, so that the centre of gravity were higher, then the structure would fall, because the line of direction would fall without the base.

We see that animals (and men) are continually altering the position of

[graphic][merged small]

the centre of gravity; for if a man bears a load he will lean forward, and if he takes up a can of water in one hand he will extend the other to preserve his balance or equilibrium.

The experiment shown in the accompanying illustration is apparently very difficult, but it will be found easy enough in practice if the hand be steady. Take a key, and by means of a crooked nail, or "holdfast," attach it to a bar of wood by a string tied tightly round the bar, as in the picture. To the other extremity of the bar attach a weight, and then drive a largeheaded nail into the table. It will be found that the key will balance, and even move upon the head of the nail, without falling. The weight is under the table, and the centre of gravity is exactly beneath the point of suspension.

« AnteriorContinuar »