Imágenes de páginas
PDF
EPUB

2. Reduce at, b, c), and df, to a common index.

Ans. (a3), (012), (4), and (24)t. 3. Reduce va + 2, Va – X, and Va – 2, to a common index.

Ans. Va + x), Wa — «)', and 'la? — x2)3. 4. Reduce V, 2, and 5V3, to a common index.

Ans. 2007, V7, and 527. 5. Reduce ax, (bx), (cx)t, and (dx)ł, to a common index.

Ans. (a??yle) T'?, (1620) ??, (0424) T't, and (2329) T?. 6. Reduce cxo, (dx)t, and (24), to a common index. .

Ans. (022), (das)t, and (24)* % Reduce VT, V10, and 101, index.

Ans. 49, V1000, and 18,1..

to

common

common

8. Reduce VI, V18, and 1331, to a index.

Ans. VŽ, VĂ, and V11.

II, FUNDAMENTAL OPERATIONS ON RADICALS.

1o. Addition of Radicals.

130. Radicals cannot be added unless they are similar. To determine when they are similar, we must reduce them to their simplest form; then, if their radical parts are the same, they will be similar, and if we regard the common radical part as a unit, we shall have the following rule for finding their sum:

RULE.

Reduce the radicals to their simplest forms; then, if they are similar, add the coefficients for a new coefficient, and write the sum before the common radical part.

EXAMPLES.

Find the sums of the following groups of radicals:

1. V18, V32, V50, and 772.

Ans. 3V2 + 4V2 + 5V2 + 6V2

18V2.

2. 2V8, 3V50, and 6V18.

Ans. 37V2. 3. V, 1ts, and VH.

Ans. 3.1 15. 4. V, 107, and .

Ans. 6. 5. XV 12a4x, 2a2v27x3, 3av

48a2x3, and 5a2x V3x.

Ans. 25a x V3.2.

6. 54an+633, ař16an376, and 2q4n+9.

Ans. (3a2b + 262 + an+3) 2a". 7. 6V 4a, 22a, and V8a.

Ans. 92a. 8. 2V3, 1V12, 4v27, and 2176 Ans. *V3. 9. 3620513, 92a365, and 8ay2d?65.

Ans. 18ab2a-62.

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small]

131. We cannot subtract one radical from another unless the two are similar. In that case, we have the following

RULE.

Reduce the radicals to their simplest forms; then, if they are similar, subtract the coefficient of the subtrahend from that of the minuend, and write the remainder before the common radical part.

EXAMPLES.

1. From 1320, subtract V80.

Ans. 8V5 – 4V5 = 475.

2. From b27a6b, subtract 216a%b4.

Ans.

[ocr errors]

3. From Va3 + 2ab + ab?, subtract Va3—2a2b + ab?.

Ans. 20V a. 4. From fV+3V, subtract tha.

Ans. 31.

5. From V 289a%b, subtract V144a.

Ans. 5avi. 6. From 2v8a3+5 V 720%, subtract Yav 180 +V50ab%.

Ans. (13a - 56) 2a.

a + 2

1%. From (a − x) Va? – 22, subtract

[ocr errors]
[merged small][ocr errors]
[ocr errors]

8. From 81 + 192, subtract V512.

Ans. 3 - 8.

30. Multiplication of Radicals.

132. Since two radicals can always be reduced to a common index, we may take año, and ca, to represent any two radicals whatever. The indicated product is,

a VT xcņā.

We may change the order of the factors without changing the value of the product; hence, may write the product under the form,

aco x .

But, from principle 1°, V x V = Vbd; hence,

[ocr errors][merged small][merged small]

RULE.

Reduce the radicals to a common index; then multiply the coefficients together for a new coefficient, and the quantities under the radical signs for a new quantity under the radical sign, leaving the index unchanged.

[blocks in formation]

% V8 x 5.

Ans. V512 x 25 = 12800 = 2V200.

[merged small][merged small][merged small][subsumed][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][subsumed][ocr errors][merged small][ocr errors][merged small]

By combining the above rule with that for the multiplication of polynomials, complicated radical expressions may be multiplied together.

« AnteriorContinuar »