Manual of Mathematicall Tables

Portada
Longman, Brown, Green, Longmans, & Roberts, 1860 - 252 páginas
0 Opiniones
Las opiniones no están verificadas, pero Google revisa que no haya contenido falso y lo quita si lo identifica
 

Comentarios de la gente - Escribir un comentario

No encontramos ningún comentario en los lugares habituales.

Contenido


Otras ediciones - Ver todas

Pasajes populares

Página vii - The logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers.
Página vi - The characteristic of the logarithm of a number greater than unity is one less than the number of integral figures in that number.
Página viii - The logarithm of the quotient of two numbers is equal to the logarithm of the dividend minus the logarithm of the divisor.
Página xii - Hence we see that if we wish to divide one number by another, we have only to subtract the logarithm of the divisor from that of the dividend ; the difference will be the logarithm of their quotient. (4.) Since, in Briggs...
Página xv - As in the latter case, all the sines and cosines, all the tangents from o° to 45°, and all the cotangents from 45° to 90°, are less than unity (or i), the logarithms of these quantities have negative characteristics or indices.
Página vi - " = тез =o.oi t0"3 = = o-001 &c. &c. It follows from this, that the characteristics of the logarithms of all numbers less than unity are negative, and may be found by The...
Página xiii - ... will be the logarithm of the quotient. 3°. Find from the Tables the corresponding number. This will be the required quotient.
Página xvi - If the value of the log sine, log cosine, &c., be given, and it is required to find the angle, we use the following 1°.
Página xi - XXXII, page 50.) 2°. Add these together, the sum will be the logarithm of the product. 3°. Find from the Tables the corresponding number. (For the method of finding the corresponding number to a log., see pages 57 to 58.) This will be required product.
Página v - Division by Logarithms — 7. Involution by Logarithms.— 8. Evolution by Logarithms.— 9.

Información bibliográfica