 | Charles Davies - 1830 - 300 páginas
...should obtain, THEOREM. 44. In any plane triangle, the sum of tfte two sides containing either angle, is to their difference, as the tangent of half the sum of the other two angles, to the tangent of half their difference. Let ABC (PI. I. Fig. 3) be a triangle ;... | |
 | Jeremiah Day - 1831 - 370 páginas
...therefore, from the preceding proposition, (Alg. 389.) that the sum of any two sides of a triangle, is to their difference ; as the tangent of half the sum of the opposite angles, to the tangent of half their difference. This is the second theorem applied to the... | |
 | Robert Gibson - 1832 - 348 páginas
...AH : IH : : CE : ED ; that is, as the sum of the two sides AB and BC is to their difference, so is the tangent of half the sum of the two unknown angles A and C to the tangent of half their difference. QED THEOREM III. Fig. 12. In any right-lined' plane triangle... | |
 | John Radford Young - 1833 - 264 páginas
...4 tan. a — 4 ~~ tan. J(A — B) ' that is to say, in any plane triangle the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. By help of this rule we may determine the... | |
 | Euclid - 1835 - 513 páginas
...difference ; and since BC, FG are parallel, (2. 6.) EC is to CF, as EB to BG; that is, the sum of the sides is to their difference, as the tangent of half the sum of the angles at the base to the tangent of half their difference. * PROP. IV. FIG. 8. In a plane triangle,... | |
 | Adrien Marie Legendre - 1836 - 359 páginas
...c=2p — 2c, a+c — 6=2p — 26; hence THEOREM V. In every rectilineal triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides, to the tangent of half their difference. For. AB : BC : : sin C : sin... | |
 | John Playfair - 1836 - 114 páginas
...three being given, the fourth is also given. PROP. III. i In a plane triangle, the sum of any two sides is to their difference, as the tangent of half the sum of the angles at the base, to the tangent of half their difference. Let ABC be a plane triangle, the sum of... | |
 | John Playfair - 1837 - 318 páginas
...BC is parallel to FG, CE : CF : : BE : BG, (2. 6.) that is, the sum of the two sides of the triangle ABC is to their difference as the tangent of half the sum of the angles opposite to those sides to the tangent of half their difference. 325 PROP. V. THEOR. If a perpendicular... | |
 | 1837 - 249 páginas
...AC :: sin C : sin B. THEOREM II. In any triangle, the sum of the two sides containing eithet angle, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of half their difference. 58. Let ACB be a triangle : then will AB+AC:... | |
 | Euclid, James Thomson - 1837 - 390 páginas
...sine of a right angle is equal to the radius. PROP. III. THEOR. THE sum of any two sides of a triangle is to their difference, as the tangent of half the sum of the angles opposite to those sides, is to the tangent of half their difference. Let ABC be a triangle,... | |
| |