| Enoch Lewis - 1844 - 228 páginas
...to any radius whatever (Art. 27). QED ART. 30. In any right lined triangle, the sum of any two sides **is, to their difference, as the tangent of half the sum of the** angles, opposite to those sides, to the tangent of half their difference. Let ABC be the triangle;... | |
| Nathan Scholfield - 1845
...a sin. B sin. A c sin. C sin. B b PROPOSITION III. In any plane triangle, the sum of any two sides, **is to their difference, as the tangent of half the sum of the** angles opposite to them, is to the tangent of half their difference. Let ABC be any plane triangle,... | |
| Benjamin Peirce - 1845 - 449 páginas
...solve the triangle. -4n'. The question is impossible. 81. Theorem. The sum of two sides of a triangle **is to their difference, as the tangent of half the sum of the** opposite angles is to the tangent of half their difference. [B. p. 13.] Proof. We have (fig. 1.) a... | |
| Euclid, James Thomson - 1845 - 352 páginas
...proposition is a particular case of this PROP. III. THEOR. — The sum of any two sides of a triangle **is to their difference, as the tangent of half the sum of the** angles opposite to those sides, is to the tangent of half their difference. Let ABC be a triangle,... | |
| Nathan Scholfield - 1845
...B sin. A sin. C sin. B sin. C. 68 PROFOSITION in. In any plane triangle, the sum of any two sides, **is to their difference, as the tangent of half the sum of the** angles opposite to them, is to the tangent of half their difference. Let ABC be any plane triangle,... | |
| Scottish school-book assoc - 1845
...6 tan. 4(A — B) opposite to the angles A and B, the expression proves, that the sum of the sides **is to their difference, as the tangent of half the sum of the** opposite angles is to the tangent of half their difference, which is the rule. (7.) Let (AD— DC)... | |
| Benjamin Peirce - 1845 - 449 páginas
...triangle. j ¿ , C> ~! ' ' Ans. The question is impossible. 81. Theorem. The sum of two sides of a triangle **is to their difference, as the tangent of half the sum of the** opposite angles is to the tangent of half their difference. [B. p. 13.] Proof. We have (fig. 1.) a:... | |
| Nathan Scholfield - 1845 - 232 páginas
...proposition, a sin. A.~ c b sin. 68 FROPOSITION III. In any plane triangle, the sum of any two sides, **is to their difference, as the tangent of half the sum of the** angles opposite to them, is to the tangent of half their difference. Let ABC be any plane triangle,... | |
| William Scott - 1845
...b : a — b :: tan. | (A + в) : tan. ¿ (A — в).* Hence the sum of any two sides of a triangle, **is to their difference, as the tangent of half the sum of the** angles oppo-* site to those sides, to the tangent of half their difference. SECT. T. EESOLUTION OF... | |
| Euclid, John Playfair - 1846 - 317 páginas
...BC is parallel to FG, CE : CF : : BE : BG, (2. 6.) that is, the sum of the two sides of the triangle **ABC is to their difference as the tangent of half the sum of the** angles opposite to those sides to the tangent of half their difference. PROP. V. THEOR. If a perpendicular... | |
| |