 | Charles Davies - 1854 - 322 páginas
...AC :: sin G : sin B. THEOREM II. In any triangle, the sum of the two sides containing either *ngle, is to their difference, as the tangent of half the sum of the two oilier angles, to the tangent of half their difference. 22. Let ACS be a triangle: then will AB+AC... | |
 | Charles Davies - 1854 - 432 páginas
...also have (Art. 22), a + b : ab :: tan $(A + B) : ta.n$(A — B): tha| is, the sum of any two sides is to their difference, as the tangent of half the sum of the opposite angles to the tangent of half their difference. 91. In case of a right•angled triangle,... | |
 | Allan Menzies - 1854
...Suppose AC, CB, and angle C to be given, then rule is, — Sum of the two sides (containing given angle) is to their difference as the tangent of half the sum of the angles at the base is to the tangent of half their difference ; half the sum = ^ (180 — angle C),... | |
 | Charles Davies - 1855 - 324 páginas
...sin A : sin BTheorems.THEOREM IIIn any triangle, the sum of the two sides contain1ng either angle, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of half their differenceLet ACB be a triangle: then will AB + AC:AB-AC::t1M)(C+£)... | |
 | William Smyth - 1855 - 223 páginas
...tan — ~ ; lU —4 a proportion, which we may thus enunciate ; the sum of two sides of a triangle is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference. Ex. 1. Let AC (fig. 30) be 52. 96 -yds,... | |
 | W.M. Gillespie, A.M., Civ. Eng - 1855
...to each other as the opposite sides. THEOREM II. — In every plane triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference. THEOREM III. — In every plane... | |
 | Elias Loomis - 1855 - 178 páginas
...i(A+B) . sin. A-sin. B~sin. i(AB) cos. i(A+B)~tang. i(AB) ' that is, The sum of the sines of two arcs is to their difference, as the tangent of half the sum of those arcs is to the tangent of half their difference. Dividing formula (3) by (4), and considering... | |
 | Peter Nicholson - 1856 - 216 páginas
...+ BC :: AC-BC : AD — BD. TRIGONOMETRY. — THEOREM 2. 151. The sum of the two sides of a triangle is to their difference as the tangent of half the sum of the angles at the base is to the tangent of half their difference. Let ABC be a triangle 4 then, of the... | |
 | GEORGE R. PERKINS - 1856
...(2.) In the same way it may be shown that THEOREM II. In any plane triangle, the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. By Theorem I., we have 5 : c : : sin. B... | |
 | William Mitchell Gillespie - 1856 - 464 páginas
...to each other a* the opposite sides. THEOREM II. — In every plane triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference. THEOREM III. — In every plane... | |
| |