 | William Mitchell Gillespie - 1869 - 428 páginas
...to each other at the opposite sides. THEOREM EL — In every plane triangle, the turn of two tides is to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference. THEOREM III. — In every plane... | |
 | New-York Institution for the Instruction of the Deaf and Dumb - 1869
...we have the principle. When two sides and their included angles are given : The sum of the two sides is to their difference as the tangent of half the sum of the other two angles is to the tangent of half their difference. This young man also worked out a problem... | |
 | Charles Davies - 1870 - 319 páginas
...0 : sin B. Theorems. THEOREM II. In any triangle, the sum of the two sides containing either angle, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of half their difference. Let ACB be a triangle: then will AB + AC: AB—... | |
 | New-York Institution for the Instruction of the Deaf and Dumb - 1871
...we have the principle. When two sides and their included angles are given : The sum of the two sides is to their difference as the tangent of half the sum of the other two angles is to the tangent of half their difference. This young man also worked out a problem... | |
 | Elias Loomis - 1871 - 58 páginas
...^(A+B) . sin. A-sin. B~sin. ^(AB) cos- ^(A+B)~tang. ^(AB) ' that is, The sum of the sines of two arcs is to their difference, as the tangent of half the sum of those arcs is to the tangent of half their difference. COS f*fvt Dividing formula (3) by (4), and considering... | |
 | Charles Davies - 1872 - 455 páginas
...have the following principle : In any plane triangle, the sum of the sides including either angle, is to their difference, as the tangent of half the sum of the two other angles, is to the tangent of half their difference. The half sum of the angles may be found by... | |
 | Edward Olney - 1872 - 239 páginas
...horizontal parallax. PLANE TRIGONOMETRY. 80. Ргор.— The sum of any two sides of a plane triangle is to their difference, as the tangent of half the sum of the angles opposite is to the tangent of half their difference. ( DEM. — Letting a and b represent any... | |
 | William Frothingham Bradbury - 1872 - 238 páginas
...same sine, and BD = a sin. BCD = a sin. C (41) B 102. In any plane triangle, the sum of any two sides is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference. Let ABC (Art. 103) be a plane triangle... | |
 | Edward Olney - 1872 - 201 páginas
...horizontal parallax. PLANE TRIGONOMETRY. 86. Prop.— Tlie sum of any two sides of a plane triangle is to their difference, as the tangent of half the sum of the angles opposite is to the tangent of half their difference. DEM. — Letting a and b represent any... | |
 | Edward Olney - 1872
...horizontal parallax. PLANE TRIGONOMETRY. 86. Prop.— TJie sum of any two sides of a plane triangle is to their difference, as the tangent of half the sum of the angles opposite is to the tangent of half their difference. 1 >K\r. — Letting a and b represent any... | |
| |